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The method of matched asymptotic expansions is used to determine the lateral 
flow of an ideal fluid past a slender body, when the flow is constrained by a pair of 
closely spaced walls parallel to the long axis of the body. In  the absence of walls, 
the flow field would be nearly two-dimensional in the cross-flow plane normal 
to the body axis, but the walls introduce an effective blockage in the cross-flow 
plane, which causes the flow field to become three-dimensional. Part of the flow 
is diverted around the body ends, and part flows past the body in the inner 
cross-flow plane with a reduced ‘inner stream velocity’. An integro-differential 
equation of identical form to Prandtl’s lifting-line equation is derived for the 
determination of this unknown inner stream velocity in the cross-flow plane. 
Approximate solutions are applied to determine the added mass and moment 
of inertia for accelerated body motions and the lift force and moment acting on 
a wing of low aspect ratio. It is found that the walls generally increase these 
forces and moments, but that the effect is significant only when the clearance 
between the body and the walls is very small. 

1. Introduction 
When a rigid slender body moves through an infinite ideal fluid, it is known 

that there exist significant three-dimensional effects, involving interactions 
between adjacent sections of the body, only when it moves in longitudinal trans- 
lation parallel to its long axis. For lateral translation, in directions normal to 
the body axis, as well as for rotational motions of the body, the resulting flow is 
locally two-dimensional and confined to the ‘cross-flow’ plane at  each section 
without significant interaction between adjacent sections of the body (cf. 
Thwaites 1960). Moreover, it is well known that the lifting problem of a wing of 
small aspect ratio can be analyzed in the same manner as the lateral translation 
of a non-lifting slender body, so that here, too, the flow is locally two-dimen- 
sional in the cross-flow plane. 

Generally speaking, these results are not qualitatively changed if the body 
moves parallel to a single wall, or an infinite plane boundary of the fluid, and the 
wall will serve only to  introduce a perturbation of the original flow. As an ex- 
ample of this type of problem, Newman (1965) has treated the longitudinal 
translation of a slender body of revolution, moving near an infinite wall; the 
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wall introduces an attractive force and moment which act on the body, but the 
qualitative features of the flow do not change as a result of the proximity of the 
wall, and the original formulation of the slender-body approximation does not 
require fundamental modification. The lateral motion of a slender body of revolu- 
tion near a single wall is less amenable to analysis, since the exact solution in the 
cross-flow plane can no longer be obtained in closed form, but one can expect 
the cross-flow approximation to remain valid, and the problem is essentially 
amenable to a two-dimensional strip-theory approach. 

I f  the body is situated between two parallel walls, with its long axis parallel to 
these boundaries, the flow field is more significantly affected. Indeed, it is clear 
that the far-field flow must now be two-dimensional, in planes parallel to the 
walls, but in fact, for longitudinal motion, this serves as a slight simplifica , t‘ ion. 
The closely related problem of longitudinal steady motion of a ship in shallow 
water has been treated by Tuck (1966). The case of lateral motion of the body 
between two parallel walls involves a more significant wall effect, for now the 
original cross-flow hypothesis breaks down and the flow must be considered to be 
three-dimensional, with interaction between the different sections of the body. 
As an extreme example, if the gaps between the body and the walls are closed, 
then the fluid must pass entirely around the ends of the body, and this flow field 
will be two-dimensional, not in the cross-flow plane, but in planes parallel to 
the walls, where the body will appear as a thin barrier a t  normal incidence. 

The lateral motion problem is of practical importance in attempting to 
analyze ship manoeuvres in shallow water, and will be considered here. There is 
increasing interest in shallow-water effects on ships, because of the large draft 
of super-tankers, which may typically draw 20 m, and are required to navigate 
for extended periods in water depths of comparable magnitude. If the ship’s 
speed is not large (more precisely, if the Froude numbers based on the ship 
length and fluid depth are both small compared to unity), free-surface effects 
can be neglected, so that reflexion about the free surface results in an equivalent 
problem involving the flow past a submerged body between two horizontal 
rigid boundaries. This problem may also have aerodynamic applications, as 
it is essentially that of a wing of small aspect ratio, separated by small gaps 
from two infinite boundaries, or from an infinite lateral array of identical 
bodies. 

The transition from a pure cross-flow to one involving three-dimensional 
motion, and ultimately to one where the flow is two-dimensional in a longitudinal 
plane, is not a t  first glance amenable to the usual slender-body approximation. 
It will be seen, however, that the method of matched asymptotic expans- . ions 
(cf. Van Dyke 1964) leads to a solution which is related to Prandtl’s lifting-line 
theory for wings of large aspect ratio. The inner flow, close to the body, is indeed 
a cross-flow in the usual sense, but with a reduced stream velocity incident 
upon each section of the body due to the blockage effect. The outer solution 
appears as a two-dimensional flow in planes parallel to the wall, with the un- 
diminished transverse stream velocity incident from infinity and the body re- 
duced to a line or cut normal to the flow, and with part of the flow passing around 
the body and some of it passing ‘through’ the body. Matching of these two solutions 
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results in a unique determination of the reduced inner stream velocity, and hence 
of all the essential details of the flow field. 

Throughout the analysis the fluid is considered as inviscid and incompressible. 
Viscous effects may affect the validity of the results, due to separation of the 
flow around the body and also to the existence of a boundary.layer between the 
body and the walls. The former is a familiar problem in analyzing the lateral 
motions of slender bodies and will not be discussed here. Boundary layer effects 
would be serious if the body were fixed and the fluid was in motion relative to 
the infinite walls,t but in practice the body will be moving instead, into a fluid 
which is at rest at infinity, so that the boundary layer should be relatively thin. 

In  $92-4 we shall treat, by the method of matched expansions, the simplest 
case of uniform lateral translation. The resulting solution is used in $5 to yield 
the added-mass coefficient for the body. More general lateral motions are con- 
sidered in $6, with application to the added moment of inertia associated with 
rigid-body rotation. l n  $7, we consider the lifting problem, where the body is 
moving in the longitudinal direction, but with a small angle of attack about an 
axis normal to the walls, so that a lift force is developed parallel to the walls. 
In  $ 8, the added mass and moment of inertia, and the lift force and moment, are 
determined for a rectangular flat plate, and comparison is made with recent 
experiments on a yawed ship model in shallow water. 

2. Problem statement 
Cartesian co-ordinates are employed, the x axis coinciding with the longi- 

tudinal body axis. Two infinite walls are located parallel to the z-y plane, with 
one on each side of the body. It is not essential to assume that these planes are 
symmetrically situated with respect to the z-y plane, but the simple examples 
considered here will be symmetrical in this sense. Thus, the fluid occupies the 
domain -$a < z < &a; except for the interior of the body. For convenience, 
the length scale is chosen such that the body length is equal to two, with the ends 
situated at the points ( rf: 1, 0,O) (see figure 1). Slenderness of the body implies 
not only that its transverse dimensions are small, or that every point on the body 
surface lies within a distance E of the z axis, with E < 1, but also that the longi- 
tudinal distances, over which changes in body shape occur, are O( 1). In order for 
the walls to significantly affect the cross-flow past the body, it is implicit that 
a = O(E), although the final results of our theory appear to be valid without this 
restriction, reducing for larger wall separation to the classical slender-body 
results. Finally, for distances from the body which are large compared to its 
length, the flow field appears as a uniform stream of velocity V ,  moving parallel 
to the y axis, so that the velocity potential must satisfy the condition 

or, after integrating with respect to y and setting the constant of integration 

(2.2) 
equal to zero, 

$ ( ~ g , z )  = J'y, for y > 1. 

7 In this case the motion would resemble that in a Hele-Shaw cell. 
1-2 
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3. The inner expansion 
The inner region of the flow is that region where y is small compared to the 

length. Here, except for a longitudinal velocity component which depends 
only on x, the flow is confined to the cross-flow plane at  each section by virtue 

FIGURE 1. The co-ordinate system and flow geometry. The planes z = *&a are rigid 
infinite walls, and the length scale is chosen such that the body ends are at  z =: f 1. 

of the usual inner (two-dimensional) expansion of Laplace’s equation, and will 
appear as shown in figure 2. In  the inner region, the lateral stream velocity in- 
cident upon the body will be denoted by U ( s ) .  In  general, this inner stream 
velocity will be reduced, from its outer value V ,  due to the partial diversion of 
the outer flow around the body ends. Thus, in the inner region, we impose the 
limiting condition 

where the & corresponds respectively to y 0. Here C is a parameter, which 
can be regarded as a constant of integration, and will generally vary along the 
body length, so that C = C(x) .  (Variations of U(x)  and C(z) are assumed to be 
small, over distances O(e).) It is essential to include the parameter C in (3.2) 
since, in general, the potential at  x = 00 will differ by a constant in any two- 
dimensional flow of the type considered here.? This point has been discussed in a 

t The situation in $2  differs, and the constant of integration in (2.2) could be deleted, 
essentially because, at  infinity in the outer region, (2.2) must hold for large values of the 
polar radius v = (zZ+ya)* at all polar angles t a r 1  y/z, so there can be no jump as in (3.2). 
It may be noted that, in both (2.2) and (3.2), the constant of integration has been chosen 
so that these potentials are odd functions of y; this is a premature, but trivial, application 
of the matching principle. 
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similar context by Tuck (private communication), in connexion with the inner 
expansion of a water-wave scattering problem. 

The ‘blockage parameter ’ C can be determined from the conformal-mapping 
function of the given flow geometry, or alternatively from direct solution of the 
potential problem. The simplest example of the latter is the flow past an infinite 

array of dipoles, directed opposite to the stream, and equally spaced along a line 
normal to this direction, so that to a first approximation the dipoles represent 
the normal flow past an infinite cascade of circles. By the method of images, 
this problem is then equivalent to the flow past a single nearly-circular section 
situated midway between two parallel walls. From Lamb (1932, $64) it follows 
directly that 

where X is the cross-sectional area of the circle. Lamb notes that this approxi- 
mation introduces a negligible error provided the diameter is less than half the 
wall separation a. 

More generally, the inner flow can be likened to the flow past a cascade of two- 
dimensional non-lifting bodies, and information can be obtained from Sedov 
(1950, chapter 111). In  particular, Sedov notes (equation 8.6) that the constant 
C can be related to the added-mass coefficient of the profile, in accordance with the 

C z X/a, (3.3) 

equation A,, = - pS + 2paC. (3.4) 

Here A,, is the coefficient of added mass, or the hydrodynamic force acting to 
resist a unit acceleration of the body in the direction of the y axis, p is the fluid 
density, and X denotes the area circumscribed by the profile. Sedov gives values 
of the coefficient A,, for various cascaded profiles, including a flat plate of 
width d normal to the stream, and a limited class of rectangles. For the flat plate 

a2 nd 
7-l 2a 

A,, = - 2p - log cos - , 

so that in this case the constant G is given by the relation 

a nd 
7T 2a 

c = --logcos-. 

(3.5) 

(3.6) 

No further analysis of the inner flow is required, and we shall assume that 
for the body sections under consideration sufficient information exists regarding 
the parameter C. 
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4. The outer flow and the matching process 
For transverse distances y = O(l ) ,  the body appears as a cut of negligible 

thickness on the x axis, and local flow conditions, which existed in the inner 
solution, are absorbed entirely into the singular behaviour on this cut. Moreover, 
as the perturbation parameter 8 tends to zero, recalling that the wall separation 
distance a = O(s), the outer flow will be confined increasingly to planes parallel 
to the walls, so that to a first approximation in the slenderness parameter the 
outer flow appears as a two-dimensional field, in the x-y plane. The resulting 
outer flow is as shown in figure 3; it is clear that this is physically similar to the 
flow past a porous flat plate at  normal incidence, with the flux through the plate 
representing the flux past the body in the cross-flow plane of the inner solution, 

FIGURE 3. The outer flow region. 

and the flux past the body ends representing the tendency for some of the fluid 
to pass around the ends due to the blockage in the cross-flow plane. For the sake 
of generality, we shall take the normal velocity on the cut to be 

81 < x < 1, 

with w&) an unknown which is to be subsequently determined by the matching 
procedure. (From continuity considerations we might anticipate that wo == U ,  
and this will be confirmed.) 

The solution of the above-stated problem is readily obtained from standard 
Hilbert transform techniques. Thus the complex velocity, 

f(2) = u - iv, 

is an analytic function of the complex variable z = z + iy, subject to the Conditions 

Imf(x, 0 )  = -vo(z) on - 1 < x < 1, (4.2) 

and f(z)  z -iV for IzJ+oo. (4.3) 

Ref(x,O) = 0 for 1x1 > 1, (4.4) 

It is also necessary to impose the requirement that 

which follows from the symmetry of the outer flow about the x axis and, in 
addition, the singularity condition that 

(9- l ) f (z)+O for z+ 1. (4.5) 
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The last condition is common and occurs, e.g. in dealing with the leading-edge 
singularity of a thin aerofoil; essentially (4.5) ensures that the velocity field 
contains no stronger singularities at the ends of the cut than the square-root 
infinities, which are familiar in the case of the flow incident upon an impermeable 
flat plate at normal incidence. 

We follow the usual method for solution of such problems (cf. Muskhelishvili 
1946): the function f(z) (1 -22)) is analytic in the cut z plane and, from (4.2) 
and (4.4), its imaginary part is specified on the entire real axis. Therefore, this 
function can be determined from Cauchy's integral theorem, for all values of z 
outside the cut, by the integral 

where P(z) is an arbitrary polynomial with real coefficients, which denotes the 
homogeneous solution of (4.2) and (4.4). 

Dividing both sides of (4.6) by the square-root function and imposing the 
condition at infinity from (4.3) gives: 

In  particular, for points close to the cut, 

and v(x, + O )  = Vo(X). (4-9) 

Here f denotes the Cauchy principal-value integral. 
Matching of the outer flow with the inner solution implies that (4.8) and (4.9) 

must be matched with the asymptotic values of the same velocity components 
a t  large distances from the body section in the inner flow where, from (3.2), 

(4.10) 

In  (4.10), and hereafter, a prime denotes the derivative with respect to x. Equat- 
ing (4.9) and (4.11) gives the anticipated result 

wo(x) = U(x). (4.12) 

Matching (4.8) and (4.10) then gives the integral equation 

for - 1  < x < 1. 
Equation (4.13) is the ultimate result of the matching process. It is a singular 

integro-differential equation for the unknown inner stream velocity U(x), 
assuming that the body velocity V is given and the blockage parameter C(x) 
has been determined from the geometry of the inner region. It is clear that the 
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only influence of the body geometry and of the wall separation on the outer 
flow, and on the inner stream velocity, is via this parameter. 

In  order to determine the constant P(O), a suitable end-condition must be 
imposed. For a body with non-square ends, or one for which the body-radius 
vanishes at the ends, C( -t 1 )  = 0, since the blockage parameter must be zero if 
there is no finite body in the inner region. If the body ends are square (a situation 
in which the slender-body approximation must be regarded with caution !), 
it is physically apparent that the flow at the ends will be completely diverted by 
blockage, so that in this case U (  & 1) = 0. Thus, in general, the product UC 
should satisfy the condition 

U(x)C(x )  = 0 at x =  +I. (4.14) 

To relate this condition to P(O), (4.13) will be integrated, with respect to  x, 
to give the Fredholm equation, 

1 1  
U(x)C(x ) -  U(l )C( l )  = -- U(( )K(x ,C)d[+  V(l-x2)4 J-, 

- P( 0) (in + s i r 1  x). (4.15) 
Here K(z ,  6 )  is the symmetric kernel defined by 

(4.16) 

Since this kernel vanishes when x = 1, it follows that the constant P(0) 
must be equal to zero, in order to satisfy (4.14). Thus we obtain finally the 
Fredholm equation 

(4.17) 

For sufficiently large values of C, (4.17) can be solved by iteration, and the 
first stage in such a scheme is clearly 

U ( x )  g (1 - x2)3 ( V/C) .  (4.18) 

This approximation is relevant in the case where the separation of the walls 
from the body is very small. The opposite extreme, where the walls are far away 
from the body, corresponds to the limit where C vanishes, and we then obtain 
the correct physical limit U = V .  

An alternative scheme is to operate on (4.13) with the inversion operator for 
Cauchy integral equations, so that the unknown U appears only as a free term 
and the integral involves the derivative (UC)‘. This approach is conveni.ent, 
because the resulting integral equation is identical to Prandtl’s lifting-line equa- 
tion, and well-known solutions can be borrowed for the present problem, Thus, 
we shall operate on both sides of (4.13) with the inversion operator 
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and use the Poincar6Bertrand formula (Muskhelishvili 1946) to evaluate the 
resulting double integral. In  this manner, we obtain from (4.13) the alternative 
integro-differential equation 

U(t )  = 1 -f 1 (uc) ’dx+y* (4.19) 

The form of (4.19) is identical with Prandtl’s classical lifting-line equation 
(cf. Thwaites 1960). The unknowninner streamvelocity U ,  along with the known 
outer stream velocity l’ and the blockage parameter C, can be related directly 
to the aerodynamic problem of a wing of large aspect ratio, in terms of the sub- 

(4.20) 
stitutions 

V = a, (4.21) 

and C(x) = nc(x)/4. (4.22) 

Here C, is the spanwise local lift-coefficient of the wing, a is the angle of attack, 
and c(x) is the local chord. By analogy with the non-dimensional co-ordinates of 
our problem, the aerofoil must occupy the cut 1x1 < 1 and is, therefore, of span 
equal to two. For the case of infinite aspect ratio, we recover the limiting result 
that U = V ,  since for a two-dimensional flat aerofoil C, = 27ra. Moreover, the 
requirement that the wing loading vanish at  the tips corresponds in our problem 
to the vanishing of UC at the ends of the body. 

Two special cases will now be discussed. First, we consider the simple case of 
an elliptic ‘planform’, where the blockage parameter C is 

C(x) = C(O)(l-x2)k (4.23) 

Then the aerodynamic loading is also elliptical, and the solution for the ‘flux- 
defect-ratio’ is the constant 

7r -1 2 - t  

u = CL/27T, 

U 1 
v - l+C(O)‘  (4.24) 

(Note that this special case is consistent with the ‘low aspect ratio’ limit of small 
wall-separation, or large C, as given by (4.18).) If we employ Lamb’s approxi- 
mation (3.3) for nearly circular sections, it is apparent that (4.23) corresponds 
to a body of revolution with an elliptic distribution of sectional area, or a body 
which is somewhat more blunt than a spheroid. 

As our second example we consider the analogue of a rectangular wing, or 
C(x)  = constant, corresponding to a cylindrical body with square ends. In 
this case, the complete solution requires a numerical procedure, such as the use 
of a Glauert trigonometric series. However, the departure of the load distribution 
from an elliptic form is quite small, and this difference vanishes in the limit of 
small aspect ratio, so that for the present purposes there seems little point in 
considering any but the first term in the Glauert series. Thus, with x = cos8, 
we assume that U/ V is of the form A ,  sin 8. Determination of the constant A,, 
from the requirement that the average of the flux-defect-ratio be equal to one 
when C + 0 then leads us to the approximate solution, 

(4.25) 
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5. The added-mass coefficient 
As an application of the preceding results, we shall determine the added mass 

of a slender body in lateral acceleration, including the effects of the walls. In  
order to distinguish from the two-dimensional coefficient of added mass &,, 
which was introduced in the discussion of the inner flow, we shall denote the total 
added-mass coefficient of the three-dimensional flow by Mu,, and the correspond- 
ing local added-mass coefficient of each section, in the three-dimensional flow, by 
mVV. It is also convenient to define the body volume as 

The three-dimensional added-mass coefficient can be determined by applica- 
tion of a stripwise analysis, integrating the local coefficient of each cross-section 
of the body over its length. Thus 

f l  

%, =J - m,,dx. 
-1 

The desired sectional force coefficient mu, differs from the two-dimensional 
coefficient A, due to the three-dimensional effects on the flow field, but it 
can be found, by analogy with (3.4), from the jump in the inner velocity potential 
which occurs between the two infinities of the inner solution. For the purely 
two-dimensional flow, the velocity U corresponded to the lateral velocity of the 
body, and in three dimensions the velocity of the body is V ,  relative to the fluid 
fixed at infinity. Noting that the ratio of the two accelerations, O / V ,  equals 
the ratio of the two velocities U / V ,  it follows that (3.4) must be modified by this 
ratio to determine the three-dimensional sectional added-mass force, or 

my, = -pS+2paCU/VCT. 
Integration then yields 

Mg, = -pV+2pa 

(5.3) 

(5.4) 

For the case C = constant, the approxim&tion (4.25) can then be employed, 
and it follows that 

For small values of the blockage parameter C, this result is equivalent to the 
direct stripwise application of the two-dimensional added mass from (3.4). 
The opposite limit, C-too, corresponds to the case where the body is in contact 
with the walls, so that the flow is diverted completely around the ends. In  this 
limit we have 

MvV = - p T  + mpa, ( 5 4  

which is the (two-dimensional) virtual mass of the cut on the x axis, of length 2, 
multiplied by the width u. 
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An alternative method for determining the value of the integral in (5.4) is in 
terms of a suitable variational integral. For this purpose, we first integrate 
(4.17) to get the relation, 

We shall denote the last integral by J ,  and use (4.17) to derive a variational 
principle for J ,  following the analogous procedure outlined for water-wave 
scattering by Miles (1967). Multiplying both sides of (4.17) by ( U / V 2 ) ,  and inte- 
grating once again, leads to the equation, 

J =s1, (U/V) ( l -x2 )~dx  = J:l(cu2/V2) ax 

Dividing the last result into the square of the first, it  follows that 

2 [ /:1 ( U / V  (1 - x2P 4 
J =  

This equation can now be used to determine, for a given approximation of the 
flux-defect ratio U / V ,  the added-mass coefficient. Its chief virtues are its in- 
variance to changes in scale of the trial function U / V ,  and the fact that it is 
stationary with respect to first-order perturbations of the trial function about 
the exact solution of (4.17). An indication of its accuracy is the fact that, for 
C = constant, the very crude approximation U /  V = 1 yields from (5.9) the added- 
mass coefficient ( 5 4 ,  which was obtained directly from the more accurate 
approximation for U / V  given by (4.25). If (4.25) is now used in conjunction with 
(5.9), the resulting added-mass coefficient is found, after evaluating the necessary 
integrals, in the form, 

2.094C + 0.024 
4*189c+ 3.604' 

+ -pV-k-t=pa (5.10) 

Here c(3) denotes the Riemann zeta-function of argument 3. Comparing this 
new approximation with (5 .5) ,  it is seen that the limiting result C+CQ is un- 
changed, but for very small values of the blockage parameter C, the new result 
is less accurate. Comparison with Glauert's (1948) numerical solution for a rect- 
angular wing reveals that both of our approximations are equally in error, by 
about 4% for the integral I ,  when C = 3, but for C = 1 the error in the first 
approximation (5 .5)  is unchanged, while the second approximation (5.10) 
agrees with Glauert's results to three significant figures. 
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6. Extension to other body motions 
The preceding analysis can be generalized to include lateral velocities of 

the body which are of the form V ( x ,  t ) .  If V is independent of x, the translational 
motion of $8 2-5 results, whereas if V is linear in x, one has the case of rotational 
motion about the x axis. Higher-order modes of elastic vibration can likewise 
be considered, although the slender-body assumption requires that a V/ax = O( 1) 
with respect to E. 

In  order to derive integral equations for the more general case, the inner 
flow region may be analyzed in a moving co-ordinate system, which is fixed 
locally with respect to the body section, so that in this reference frame the body 
profile is fixed, and the stream velocity at  large distances in the inner expansion 
is U-V. The outer velocity field is analyzed in a fixed co-ordinate system, with 
the requirement that the velocity vanish at infinity, and the matching conditions 
are thenunchangedfrom (4.10) and (4.1 1) .  Proceeding in this manner, the 'lifting- 
line' equation (4.19) results without modification, and the aerodynamic analogue 
is a twisted wing, with spanwise variation of the angle of attack, a = V(x) .  
The Fredholm equation (4.17) must be modified, for general V(z ) ,  and assumes 

where the kernel K(x,  () remains as given by (4.16). 

denotes the angular velocity, and obtain from (6.1) the integral equation 
For angular rotation about the x axis, we substitute V(x,t) = 82, where d 

U ( x )  C(x )  = - - U (  E) K(x ,  () d( + $8x( 1 - %a)+. S' -1 
For large values of the blockage parameter C(x) ,  the first approximatian to 

(6.3) the function U is 

The coefficient of added moment of inertia can be determined in an analogous 
manner to the added-mass coefficient. The coefficient of the added moment is 

U ( x )  g (8/2C)x(  1 - 39):. 

1 

-1 
4 2  = - P x 2 ~ ( x )  dx + 2paj' ( U C / ~ ) X  dx, (6.4) 

where the first term represents the moment of inertia of the displaced fluid. 
To determine the second integral in (6.4) from a variational method, we first 
multiply (6.2) by x/d and integrate, to obtain the relation 

A quadratic form for the last integral can be obtained, by first multiplying 
(6.2) by U/d and then integrating, as in the analogous development of (5.9). 
In  this manner it follows that [I;, u(x)x( l -+2)*dx]  2 

2 j I l  U Z ( x ) C ( z )  dz+;/- ,  w/-l ~ i ( t ) K ( x ,  5) d5dx '  
2 1  1 

(6.6) 
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We shall apply (6 .5)  and (6 .6)  to the determination of the added moment of 
inertia for the cylindrical case C = constant. As a first approximation we set 
018 = x ,  and after performing the necessary integrations it follows that 

4paC 
(3214  c + 3 * (6 .7)  

To improve upon this approximation, we can use (6 .3)  in (6 .6) ,  and it then follows 
that 

Equations (6 .7)  and (6.8) represent approximations to the added moment of 
inertia which are analogous to the corresponding results (5.5) and (5.10) obtained 
for the lateral added-mass coefficient. We can assume that (6.7) will be more 
accurate for small values of C ,  and that (6 .8)  will afford a better approximation 
for large values of C. For C > 0.1, the quotients of (6 .7)  and (6.8) differ by less 
then 5 %, which suggests that (6 .7 )  is a satisfactory approximation for all values 
of the blockage parameter C. 

7. Application to lifting surfaces of small aspect ratio 
The analysis of $02-4 can also be applied to the problem of a slender lifting 

surface. If the incident stream is parallel to the two walls, and the body is oriented 
at  a small angle of attack about an axis normal to the walls, the walls will appear 
as partial end-plates which, in effect, increase the aspect ratio of the lifting surface. 
Indeed, in the limit where the walls are in contact with the tips of the (rect- 
angular) wing, the problem is purely two-dimensional whereas, in the opposite 
extreme of large-wall separation, the problem should reduce to its conventional 
low-aspect-ratio form. 

We assume that the body contains a sharp trailing edge, of finite width and 
situated at x = 1, y = 0. We also assume, in the usual manner of conventional 
low-aspect-ratio wing theory, that the leading edge is pointed and situated at 
x = - 1, y = x = 0. However, the final results for the lift force and moment 
appear to be valid for a leading edge of finite width; and, in particular, we shall 
apply them to the case of a rectangular planform. 

In  order to preserve the previous notation for the lateral stream velocity V ,  
we take the incident stream to be the vector (1, V ,  0) ,  thus implying that a suit- 
able scale has been chosen, such that the magnitude of the free steam velocity 
is unity to fist order, and the angle of attack is V ,  which must be small compared 
with one. After subtracting off the longitudinal component of the stream velocity 
(1,0,0), and symmetrical-flow thickness effects (if any), the problem reduces 
to one involving only a lateral streaming flow (0, V ,  0 ) ,  and in this respect it is 
identical to the non-lifting problem considered in $5  2-4. However, the significant 
d8erence between the lifting and non-lifting problems is the end-condition 
which must be imposed at  the trailing edge. The condition (4.14) is now appro- 
priate only a t  the leading edge, and must be replaced a t  the trailing edge by a 
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suitable Kutta condition,? stating that the longitudinal velocity component is 
continuous at  the trailing edge. Thus, noting the relation (4.10) for the longi- 
tudinal component of the inner velocity field, we replace (4.14) by the new end 
conditions, U ( x ) C ( x )  = 0 a t  x = - 1 (leading edge) (7.1) 

and (UC)' = 0 a t  x = 1 (trailing edge). (7.2) 

The matching procedure leading to (4.13) is unchanged in the present case, 
but now the constant P(0)  in (4.13) must be chosen to satisfy the Kutta condi- 
tion, in a manner which is familiar from the linearized theory of two-dimensional 
wings. Thus it follows that " 

and (4.13) then assumes the form, 

(7.3) 

(7.4) 
1 1 - x  il 1 1+l$ au(.g)a<+P l - x  4 

( U C ) ' = - - ( - )  II l + x  1 -1 (-) 1 - t  ___ 6-2 (G). 
The lifting-line integral equation (4.19) is valid without modification, but (4.17) 
must be replaced, using (4.15) and (7.3), by 

The first term in an iterative solution, for large values of the blockage parameter 
C, or small values of the wall separation a, is 

U(x)  g (V/C)  [ (1 - x2)* + &r + sin-1 x]. (7.6) 

The opposite extreme of small C, or large wall-separation, gives the limiting 
solution U = P which can be readily confirmed from (7.5). 

Now let us consider the lift force parallel to the y axis and the moment M about 
the z axis, which are analogous to the usual aerodynamic lift and pitching 
moment. A convenient approach is that of Lighthill (1960), who showed that the 
longitudinal distribution of the lift force can be expressed in terms of the sectional 
added-mass coefficient.$ Thus, in the present notation, the lift-force distribution 
is given by the expression 

(7.7) 
cl w = V&rnuu7 

where mu,, is the sectional added-mass force, which may be obtained in the blocked 
three-dimensional flow from (5.3). Thus, combining (5.3) and (7.7), it follows that 

d 
ax  

E(x) = - [ -p 'VS(x )+2puU(x)C(x) ] .  

t AKutta condition is not usually imposed in the conventional theory of wings of small 
aspect ratio. Essentially, the need to impose end conditions, both here and in the non- 
lifting case of $4, is a consequence of the three-dimensional effects introduced by the walls. 

$ One of the referees has noted that this relationship between the lift force and the 
added mass was derived and used in several earlier papers, and indeed can be inferred 
from the original work of Munk. For a more complete discussion of this point, reference 
can be made to  the monograph of Miles (1959). 
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Integrating with respect to x, we obtain the total lift force 

L = 2 p u U ( l ) C ( l )  (7 .9)  

and, after a partial integration, the moment 

M = L + p V V ' - 2 p a  U(x)C(x)dx .  (7.10) 

Here F is the body volume, defined by (5.1); we have used the leading-edge 
condition (7.1) and the fact that the sectional-area S(x) vanishes at  the ends. 

In  the case of large blockage, (7 .6)  yields the correct limiting results for a two- 
dimensional uncambered aerofoil. More generally, the lift can be expressed in 
terms of the constant P(O), by using the Fredholm equation (7.5) to evaluate 

L1 

(7.9),  and it follows that 

or, from (7 .3) ,  
= - 2npaP(0), 

L = 2pa p-yl U(X) (E)+ dx) . 

(7.11) 

(7.12) 

Similarly, the moment (7.10) can be obtained by integration of (7.5),  in the form 

(7.13) 

The variational technique employed in $5 cannot be applied in a straight- 
forward manner to obtain approximations for the lift and moment, since the 
parameter P(0) in (7.5) destroys the symmetry of the kernel. This difficulty 
could presumably be overcome, but for C(z) = constant it is a simple matter to 
find rational approximations for the lift and moment, analogous to (5.9) and 
(6.6),  simply by finding a rational function which is correct in the limiting cases 
of large and small C. In  this manner, we obtain the approximations, 

M = V ( Y  - na) + 2pu U(2)  ( 1  - X2)+ ax.  !Il 

(7.14) 
C 

L 2npaV- 
n+C 

and 
C 

M 2 p V V - 2 ~ p a V -  
n+2C' 

(7.15) 

In  the case of a rectangular flat plate, the moment is associated entirely with 
lifting effects, and the centre-of-pressure is situated at  the point, 

M n+C 
Xcp  = - - L --nGZc* (7.16) 

Thus, as might be anticipated, the effects of blockage are to move the centre-of- 
pressure downstream from the leading edge, and ultimately to the quarter-chord 
point. 

8. Discussion and conclusions 
To illustrate the preceding results for the forces and moments associated with 

added mass and lift, we shall consider the case of a rectangular flat plate, using 
(3.6) to determine the blockage parameter C. Thus, from (5.5),  (6.7),  (7.14) and 
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(7.15), and utilizing a matrix notation for compactness, we obtain the expres- 
sions 

Here, 

and 

Substituting for the blockage parameter C ,  from (3.6), it follows that 

P [ 4alog cos (nd/2a) , 
n 2  

Pi = inpaa, / 3 ~ 1 -  

where d is the span of the plate. In  the limit u+co, (8.5) reduces to the con- 
ventional slender-body results &rpd2ai. Dividing (8.5) by this limit, we obtain 
the non-dimensional ratios 

where A = i d  is the aspect ratio of the plate, and 6 = d/a is the blockage ratio 
between the span of the plate and the separation of the walls. In  the limit of 
fully blocked flow, 6 = 1, the two-dimensional results are recovered in the form, 

The ratios (8.6) indicate the relative amount by which the four forces and mo- 
ments are increased as a result of the walls. These ratios are displayed graphic- 
ally in figure 4, plotted against the parameter 6. The three curves shown are for 
differing values of the ratio A/& which can be related to the aspect ratio of the 
plate for each of the four forces and moments, by noting the appropriate value 
of the constant Pi from (8.4). It is clear that blockage due to wall effects is most 
significant in the case of the lift force, and least important for the added-moment- 
of-inertia. In  general, however, the wall effects are very weak until the blockage 
ratio exceeds one-half, and it must exceed 0.9 in order for the forces and moments 
to be doubled relative to their original values. We emphasize that these results 
are only approximate, since they were not obtained from the exact solutions of 
the appropriate integral equations; but for one case (the virtual mass force), 
where Glauert’s solution is available for comparison, it is known that the maxi- 
mum error incurred by our approximation is 5 %. Moreover, the fundamental 
limitations of small aspect ratio and wall separation must be borne in mind, as 
these were the basic assumptions of our analysis. With respect to the wall separa- 
tion, we have already noted that the final results are correct in the limit of infinite 
wall separation, so that the limitation of small wall separation may be rega.rded 
as unimportant. Strictly speaking, however, while the limiting values of the 
forces are correct, as u+ co, the curves in figure 4 are not in accordance with the 
proper behaviour at large values of the parameter a, or small values of 8. In  
fact, the derivatives of (8.5) and (8.6) with respect to 6, evaluated at 6 = 0, are 
negative, indicating a predicted decrease in the forces and moments due to block- 
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age. (The magnitude of this decrease is so small that it  does not appear in the 
graphs; for A = 0.2/3, the minimum value of the ratio (8.6) is about 0.98.) 
This decrease is contradicted by physical intuition; moreover, the appropriate 
approximations for a 1 can be readily developed, e.g. by consideration of 
the upwash induced at  large distances from a low-aspect-ratio foil; it follows 
that there will be an increase in the lift which is O(l /a ) .  

I i 

2.0 

- 
0 

1.0 
0 

FIGURE 4. The effect of walls on the added-mass force and moment and the lift force 
and moment, for a rectangular flat plate of small aspect ratio which is oriented with its 
short sides normal to the walls. The abscissa is the blockage ratio d/a, where d is the length 
of the short sides of the plate and a is the width between the walls. A = i d  is the aspect 
ratio and the four constants pi = (1, #, 4, 2} correspond to the added-mass force, added 
moment of inertia, lift force, and lift moment, respectively. 

With respect to the manoeuvring of ships, it  is apparent that the effects of 
shallow water will be negligible unless the ship’s draft is substantially greater 
than half of the water depth but, before making definite statements, one should 
account for the thickness effects resulting from the fullness of the ship, which 
will affect the added mass and moment, and the lift moment, but not the lift 
force. Some support for these statements is provided by the recent’ experiments 
reported by Norrbin (1969). The experimental facility consists of a towing tank, 
which is specifically constructed for performing tests with ship models in shallow 
water; the length and width of the channel are 140 m and 10 m, respectively, 
and the water depth is variable. In  this facility, a model of a large tanker was 
towed at small yaw angles, and the resulting side force and moment were 
measured. The model was propelled by its own propeller, and run a t  a Froude 
number of 0.078 based upon its length; at  such a low Froude number, it may 
be presumed that free-surface effects will be minimal. The length and draft of 
the model were 3.614 m and 0.165 m, so that the effective aspect ratio is 0.092. 

8 Fluid Meoh. 39 
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Table 1 shows values of the experimental force and moment coefficients, for two 
different water depths, and corresponding predictions from (8.5). 

6 = d /a  

A 
f \ - A  1 

(Experiment) (Theory) (Experiment) (Theory) 

0.158 0.248 0-145 0.110 0.0722 
0,774 0.365 0.202 0.428 0.0975 

Ratio : 1.47 1.40 3.89 1.35 

TBLE 1. Comparison between experimental and theoretical coefficients of lift force and 
moment for a yawed ship model, for depths of water $a = id/&. The ship’s velocity is 
here denoted by V ,  yaw angle by u, length by Lg, and draft by i d .  L and M are the lift 
force and moment acting on the hull. The third line in the table shows the ratio of the 
corresponding coefficient for each of the two depths, and is comparable to the ratio plotted 
in figure 4. 

It is apparent from table 1 that the theoretical and experimental values of the 
lift force and moment are substantially different. However, the third line of the 
table shows the relative increase in each force or moment due to the shallow water, 
and in this respect alone there is satisfactory agreement between theory and 
experiment for the lift force. 

For the lift force, it is likely that the absolute differences between theory and 
experiment are due primarily to viscous effects, notably separation near the 
stern, and to the stabilizing effect of the ship’s propeller and rudder. Indeed, for 
deep water it is well known that the classical slender-body theory generally 
underestimates the observed side force acting on a yawed ship hull. Similar 
remarks apply also to the moment, but here, in addition, the theoretical predic- 
tion has been made without including thickness effects. Thickness effects can be 
included in the computations, as indicated by (7.15), but this requires a numerical 
solution for the two-dimensional blockage parameter C(z), which will depend 
on the detailed shape of the ship hull and on the depth of water. Preliminary 
computations for a rectangular profile indicate substantially greater shallow- 
water effects; taking a rectangle having the same area as the mean sectional 
area of the above-mentioned tanker model, and the same draft, and setting 
6 = 0.774, we find that the two-dimensional added-mass coefficient is increased 
by a factor of 4.8 with respect to its deep-water value. Since the corresponding 
result for the flat plate is a factor of 1.4, it is clear that thickness effects must be 
included in any realistic estimation of the lift moment acting on a yawed ship 
hull. 
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